Sains Malaysiana 55(1)(2026): 33-46

http://doi.org/10.17576/jsm-2026-5501-03

 

Performance and Surface Characteristics of CO2 Adsorption by Adsorbent Derived from Unutilized Coal at Various Temperatures

(Prestasi dan Ciri Permukaan Penjerapan CO2 oleh Penjerap yang Diperoleh daripada Arang Batu yang Tidak Digunakan pada Pelbagai Suhu)

 

IKA MONIKA1,*, MIFTAHUL HUDA1, AXL MEVIA2, RETNO DAMAYANTI3, RETNO WIJAYANTI1, EVI DWI YANTI1, ASNAN RINOVIAN1 & YUDHA GUSTI WIBOWO4,5

 

1Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Lampung, 35361, Indonesia

2Metallurgical Faculty, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132, Indonesia
3Research Center for Geological Resources, National Research and Innovation Agency (BRIN), West Java, 40135, Indonesia

4Department of Mining Engineering, Faculty of Technology Industry, Institut Teknologi Sumatera, South Lampung, Lampung, Indonesia

4Center for Green and Sustainable Materials, Institut Teknologi Sumatera, South Lampung, Lampung, Indonesia

 

Diserahkan: 6 Disember 2024/Diterima: 24 Julai 2025

ABSTRACT

Surface characteristics and performance of adsorbent materials are vital for understanding CO2 sorption. This study utilizes unexploited coal from a power plant, demonstrating its potential as an effective CO2 adsorbent through proximate, ultimate analyses and iodine number evaluations. BET analysis showed that mesopores consistently exhibited higher volumes than micropores in all samples, with the 'CMC' sample showing the greatest mesopore volume at over 0.3 cm³/g. Surface chemical functional groups and pore structure significantly influence the performance of activated carbon in adsorption processes. In this research, coal-based activated carbon served as a precursor, highlighting the effects of oxygen incorporation into the precursor structure to create new oxygen-containing sites on the surface. These groups were further examined by calcination in a nitrogen atmosphere. The oxygenation process was conducted at varying temperatures - 100, 200, 300, 400, and 500 °C - with subsequent calcination at 900 °C. The highest functional group activity occurred at 500 °C, transitioning from hydroxyl to carboxyl groups. High-temperature calcination at 900 °C facilitated the formation of nitrogen-carboxyl bonds, enhancing the micropore volume and CO2 adsorption capacity. The calcined samples demonstrated extended breakthrough times, indicating improved adsorption efficacy. Overall, this study confirms that targeted oxygenation and calcination enhance the functional group composition and pore structure of coal-based activated carbon, albeit with a modest increase in adsorption capacity due to low volatile content.

Keywords: Adsorbent; calcination; coal-based activated carbon; CO2 sorption; oxygen functional group

ABSTRAK

Ciri permukaan dan prestasi bahan penjerap adalah penting untuk memahami penyerapan CO2. Kajian ini menggunakan arang batu yang belum dieksploitasi daripada loji janakuasa, menunjukkan potensinya sebagai penjerap CO2 yang berkesan melalui analisis proksimat, analisis ultim dan penilaian nombor iodin. Analisis BET mendedahkan bahawa isi padu mesopori secara tekal lebih tinggi berbanding mikropori dalam semua sampel dengan sampel 'CMC' menunjukkan isi padu mesopori tertinggi melebihi 0.3 cm³/g. Kumpulan fungsi kimia permukaan dan struktur liang memainkan peranan penting dalam prestasi karbon aktif dalam proses penjerapan. Dalam kajian ini, karbon aktif berasaskan arang batu digunakan sebagai bahan asas, menonjolkan kesan penggabungan oksigen ke dalam struktur bahan asas untuk menghasilkan tapak baharu yang mengandungi oksigen di permukaan. Kumpulan fungsi ini diperiksa lebih lanjut melalui proses kalsinasi dalam atmosfera nitrogen. Proses pengoksigenan dijalankan pada suhu berbeza - 100, 200, 300, 400 dan 500 °C - diikuti dengan kalsinasi pada suhu 900 °C. Aktiviti kumpulan fungsi tertinggi berlaku pada suhu 500 °C, dengan peralihan daripada kumpulan hidroksil kepada kumpulan karboksil. Kalsinasi suhu tinggi pada 900 °C memudahkan pembentukan ikatan nitrogen-karboksil, meningkatkan isi padu mikropori dan kapasiti penjerapan CO2. Sampel yang dikalsinasi menunjukkan masa terobosan yang lebih panjang, menunjukkan keberkesanan penjerapan yang lebih baik. Secara keseluruhan, kajian ini mengesahkan bahawa pengoksigenan dan kalsinasi yang disasarkan meningkatkan komposisi kumpulan fungsi dan struktur liang karbon aktif berasaskan arang batu, walaupun dengan peningkatan kapasiti penjerapan yang sederhana disebabkan kandungan bahan meruap yang rendah.

Kata kunci: Kalsinasi; karbon aktif berasaskan arang batu; kumpulan fungsi oksigen; penjerap; penyerapan CO2

 

REFERENCES

Akatsuka, M., Nakayama, A. & Tamura, M. 2024. Adsorption behavior of atmospheric CO2 with/without water vapor on CeO2 surface. Applied Catalysis B: Environmental 343: 123538. https://doi.org/10.1016/J.APCATB.2023.123538

Al-Ghouti, M.A. & Da’ana, D.A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393: 122383. https://doi.org/10.1016/J.JHAZMAT.2020.122383

Anwar, M.N., Fayyaz, A., Sohail, N.F., Khokhar, M.F., Baqar, M., Yasar, A., Rasool, K., Nazir, A., Raja, M.U.F., Rehan, M., Aghbashlo, M., Tabatabaei, M. & Nizami, A.S. 2020. CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management 260: 110059. https://doi.org/10.1016/J.JENVMAN.2019.110059

Brunetti, A., Scura, F., Barbieri, G. & Drioli, E. 2010. Membrane technologies for CO2 separation. Journal of Membrane Science 359(1-2): 115-125. https://doi.org/10.1016/J.MEMSCI.2009.11.040

Canevesi, R.L.S., Schaefer, S., Izquierdo, M.T., Celzard, A. & Fierro, V. 2022. Roles of surface chemistry and texture of nanoporous activated carbons in CO2 capture. ACS Applied Nano Materials 5(3): 3843-354. https://doi.org/10.1021/ACSANM.1C04474/SUPPL_FILE/AN1C04474_SI_001.PDF

Costa, J.A.S., De Jesus, R.A., Santos, D.O., Neris, J.B., Figueiredo, R.T. & Paranhos, C.M. 2021. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review. Journal of Environmental Chemical Engineering 9(3): 105259. https://doi.org/10.1016/J.JECE.2021.105259

Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W. & Huang, H. 2021. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials 420: 126547. https://doi.org/10.1016/J.JHAZMAT.2021.126547

Florides, G.A. & Christodoulides, P. 2009. Global warming and carbon dioxide through sciences. Environment International 35(2): 390-401. https://doi.org/10.1016/J.ENVINT.2008.07.007

Ghanbari, T., Abnisa, F. & Wan Daud, W.M.A. 2020. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of The Total Environment 707: 135090. https://doi.org/10.1016/J.SCITOTENV.2019.135090

Huang, Y., Su, W., Wang, R. & Zhao, T. 2019. Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol and Air Quality Research 19(9): 2130-2150. https://doi.org/10.4209/AAQR.2019.04.0215

Igalavithana, A.D., Choi, S.W., Shang, J., Hanif, A., Dissanayake, P.D., Tsang, D.C.W., Kwon, J.H., Lee, K.B. & Ok, Y.S. 2020. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Science of The Total Environment 739: 139845. https://doi.org/10.1016/J.SCITOTENV.2020.139845

Indira, V. & Abhitha, K. 2023. Mesoporogen-free synthesis of hierarchical zeolite A for CO2 capture: Effect of freeze drying on surface structure, porosity and particle size. Results in Engineering 17: 100886. https://doi.org/10.1016/J.RINENG.2023.100886

Jalilian, M., Bissessur, R., Ahmed, M., Hsiao, A., He, Q.S. & Hu, Y. 2024. A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. Science of The Total Environment 914: 169823. https://doi.org/10.1016/J.SCITOTENV.2023.169823

Jiang, D., Li, H., Wang, S., Cheng, X., Bartocci, P. & Fantozzi, F. 2023. Insight the CO2 adsorption onto biomass-pyrolysis derived char via experimental analysis coupled with DFT calculation. Fuel 332: 125948. https://doi.org/10.1016/J.FUEL.2022.125948

Khan, U., Ogbaga, C.C., Abiodun, O.A.O., Adeleke, A.A., Ikubanni, P.P., Okoye, P.U. & Okolie, J.A. 2023. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology 8: 100125. https://doi.org/10.1016/J.CCST.2023.100125

Kumar, S., Srivastava, R. & Koh, J. 2020. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. Journal of CO2 Utilization 41: 101251. https://doi.org/10.1016/J.JCOU.2020.101251

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H. & Huang, H. 2021. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763: 144204. https://doi.org/10.1016/J.SCITOTENV.2020.144204

Li, N., Mo, L. & Unluer, C. 2022. Emerging CO2 utilization technologies for construction materials: A review. Journal of CO2 Utilization 65: 102237. https://doi.org/10.1016/J.JCOU.2022.102237

Li, H., Chen, X., Shen, D., Wu, F., Pleixats, R. & Pan, J. 2021. Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 13(38): 15998-16016. https://doi.org/10.1039/D1NR04048K

Mangun, C.L., Daley, M.A., Braatz, R.D. & Economy, J. 1998. Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers. Carbon 36(1-2): 123-129. https://doi.org/10.1016/S0008-6223(97)00169-3

Mondal, M.K., Balsora, H.K. & Varshney, P. 2012. Progress and trends in CO2 capture/separation technologies: A review. Energy 46(1): 431-441. https://doi.org/10.1016/J.ENERGY.2012.08.006

Mohd Firdaus, R., Desforges, A., Mohamed, A.R. & Vigolo, B. 2021. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Journal of Cleaner Production 328: 129553. https://doi.org/10.1016/J.JCLEPRO.2021.129553

Nguyen, T.S., Dogan, N.A., Lim, H. & Yavuz, C.T. 2023. Amine chemistry of porous CO2 adsorbents. Accounts of Chemical Research 56(19): 2642-2652. https://doi.org/10.1021/ACS.ACCOUNTS.3C00367/SUPPL_FILE/AR3C00367_SI_001.PDF

Parikh, J., Channiwala, S.A. & Ghosal, G.K. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86(12-13): 1710-1719. https://doi.org/10.1016/J.FUEL.2006.12.029

Park, K.H., Lee, J.W., Lim, Y. & Seo, Y. 2022. Life cycle cost analysis of CO2 compression processes coupled with a cryogenic distillation unit for purifying high-CO2 natural gas. Journal of CO2 Utilization 60: 102002. https://doi.org/10.1016/J.JCOU.2022.102002

Petrovic, B., Gorbounov, M. & Masoudi Soltani, S. 2022. Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Science & Technology 3: 100045. https://doi.org/10.1016/J.CCST.2022.100045

Powell, C.E. & Qiao, G.G. 2006. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science 279 (1-2): 1-49. https://doi.org/10.1016/J.MEMSCI.2005.12.062

Qian, Z., Wei, L., Wu, M. & Qi, G. 2021. Application of amine-modified porous materials for CO2 adsorption in mine confined spaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 629: 127483. https://doi.org/10.1016/J.COLSURFA.2021.127483

Qiu, C., Jiang, L., Gao, Y. & Sheng, L. 2023. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials & Design 230: 111952. https://doi.org/10.1016/J.MATDES.2023.111952

Raganati, F., Miccio, F. & Ammendola, P. 2021. Adsorption of carbon dioxide for post-combustion capture: A review. Energy and Fuels 35(16): 12845-12868. https://doi.org/10.1021/ACS.ENERGYFUELS.1C01618/ASSET/IMAGES/MEDIUM/EF1C01618_0004.GIF

Rzepka, P., Bacsik, Z., Smeets, S., Hansen, T.C., Hedin, N. & Wardecki, D. 2018. Site-specific adsorption of CO2 in zeolite NaK-A. Journal of Physical Chemistry C 122(47): 27005-27015. https://doi.org/10.1021/ACS.JPCC.8B09405/ASSET/IMAGES/LARGE/JP-2018-09405H_0004.JPEG

Saeed, M., Ahmed, M. & Ghaffar, A. 2003. Adsorption profile of molecular iodine and iodine number of polyurethane foam. Separation Science and Technology 38(3): 715-731. https://doi.org/10.1081/SS-120016661

Sai Bhargava Reddy, M., Ponnamma, D., Sadasivuni, K.K., Kumar, B. & Abdullah, A.M. 2021. Carbon dioxide adsorption based on porous materials. RSC Advances 11(21): 12658-12681. https://doi.org/10.1039/D0RA10902A

Sarwar, A., Ali, M., Khoja, A.H., Nawar, A., Waqas, A., Liaquat, R., Naqvi, S.R. & Asjid, M. 2021. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption. Journal of CO2 Utilization 46: 101476. https://doi.org/10.1016/J.JCOU.2021.101476

Schlumberger, C. & Thommes, M. 2021. Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry - A tutorial review. Advanced Materials Interfaces 8(4): 2002181. https://doi.org/10.1002/ADMI.202002181

Shen, Y. 2022. Preparation of renewable porous carbons for CO2 capture - A review. Fuel Processing Technology 236: 107437. https://doi.org/10.1016/J.FUPROC.2022.107437

Singh, G., Lee, J., Karakoti, A., Bahadur, R., Yi, J., Zhao, D., Albahily, K. & Vinu, A. 2020. Emerging trends in porous materials for CO2 capture and conversion. Chemical Society Reviews 49(13): 4360-4404. https://doi.org/10.1039/D0CS00075B

Singh, G., Lakhi, K.S., Sil, S., Bhosale, S.V., Kim, I.Y., Albahily, K. & Vinu, A. 2019. Biomass derived porous carbon for CO2 capture. Carbon 148: 164-186. https://doi.org/10.1016/J.CARBON.2019.03.050

Sun, Y., Wang, L., Wang, R., Zheng, S., Liao, X., Zhu, Z. & Zhao, Y. 2022. Insight on microscopic mechanisms of CH4 and CO2 adsorption of coal with different ranks. Fuel 330: 125715. https://doi.org/10.1016/J.FUEL.2022.125715

Taher, T., Wibowo, Y.G., Maulana, S., Palapa, N.R., Rianjanu, A. & Lesbani, A. 2023a. Facile synthesis of biochar/layered double oxides composite by one-step calcination for enhanced carbon dioxide (CO2) adsorption. Materials Letters 338: 134068. https://doi.org/10.1016/J.MATLET.2023.134068

Taher, T., Putra, R., Sari, N.K., Zurfi, A., Rohman, A., Kurnia, I., Maulana, S., Kartika, K., Wibowo, Y.G., Rianjanu, A. & Lesbani, A. 2023b. Insight into the pyrolysis behavior of the drained Sumatra peat soil and the characteristics of the resulting biochar for carbon dioxide (CO2) capture. Bioresource Technology Reports 24: 101680. https://doi.org/10.1016/J.BITEB.2023.101680

Vierling, M., Geiger, F., Brilhac, J.F., Dorge, S., Habermacher, D., Nouali, H., Guichard, J.L., Marchal, E., Patarin, J., Soulard, M. & Moliere, M. 2021. Novel desulfurization concept using a regenerable adsorbent. Proceedings of the ASME Turbo Expo 4B-2020. https://doi.org/10.1115/GT2020-16222

Wickramaratne, N.P. & Jaroniec, M. 2013. Activated carbon spheres for CO2 adsorption. ACS Applied Materials and Interfaces 5(5): 1849-1855. https://doi.org/10.1021/AM400112M/SUPPL_FILE/AM400112M_SI_001.PDF

Yuan, J., Lin, Q., Chen, S., Zhao, H., Xie, X., Cai, Z., Zhang, J., Cheng, T., Hua, M. & Zhang, R. 2022. Influence of global warming and urbanization on regional climate of megacity: A case study of Chengdu, China. Urban Climate 44: 101227. https://doi.org/10.1016/J.UCLIM.2022.101227

Zhang, M., Bai, Y., Men, X., Song, X., Lv, P., Wang, J., Su, W., Lu, G. & Yu, G. 2024. Evolution of oxygen-containing functional groups on coal char surface during gasification in H2O/CO2. Journal of the Energy Institute 114: 101622. https://doi.org/10.1016/J.JOEI.2024.101622

Zhao, P., Zhang, G., Yan, H. & Zhao, Y. 2021. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review. Chinese Journal of Chemical Engineering 35: 17-43. https://doi.org/10.1016/J.CJCHE.2020.11.028

 

*Pengarang untuk surat-menyurat; email: ikam005@brin.go.id

 

 

 

 

 

 

 

 

 

           

sebelumnya