Sains Malaysiana 55(1)(2026): 33-46
http://doi.org/10.17576/jsm-2026-5501-03
Performance and Surface
Characteristics of CO2 Adsorption by Adsorbent Derived from
Unutilized Coal at Various Temperatures
(Prestasi dan Ciri Permukaan Penjerapan CO2 oleh Penjerap yang Diperoleh daripada Arang Batu yang Tidak Digunakan pada Pelbagai Suhu)
IKA MONIKA1,*, MIFTAHUL HUDA1, AXL MEVIA2, RETNO DAMAYANTI3, RETNO WIJAYANTI1, EVI DWI YANTI1, ASNAN RINOVIAN1 & YUDHA GUSTI WIBOWO4,5
1Research Center for Mining Technology, National Research and
Innovation Agency (BRIN), Lampung, 35361, Indonesia
2Metallurgical
Faculty, Bandung Institute of Technology, Jl. Ganesha 10, Bandung, 40132,
Indonesia
3Research Center for Geological Resources, National Research and Innovation Agency (BRIN), West Java, 40135, Indonesia
4Department of Mining
Engineering, Faculty of Technology Industry, Institut Teknologi Sumatera, South Lampung, Lampung, Indonesia
4Center for Green and
Sustainable Materials, Institut Teknologi Sumatera, South Lampung, Lampung, Indonesia
Diserahkan: 6 Disember 2024/Diterima: 24 Julai 2025
ABSTRACT
Surface
characteristics and performance of adsorbent materials are vital for
understanding CO2 sorption. This study utilizes unexploited coal
from a power plant, demonstrating its potential as an effective CO2 adsorbent through proximate, ultimate analyses and iodine number evaluations.
BET analysis showed that mesopores consistently exhibited higher volumes than
micropores in all samples, with the 'CMC' sample showing the greatest mesopore
volume at over 0.3 cm³/g. Surface chemical functional groups and pore structure
significantly influence the performance of activated carbon in adsorption
processes. In this research, coal-based activated carbon served as a precursor,
highlighting the effects of oxygen incorporation into the precursor structure
to create new oxygen-containing sites on the surface. These groups were further
examined by calcination in a nitrogen atmosphere. The oxygenation process was
conducted at varying temperatures - 100, 200, 300, 400, and 500 °C - with
subsequent calcination at 900 °C. The highest functional group activity
occurred at 500 °C, transitioning from hydroxyl to carboxyl groups.
High-temperature calcination at 900 °C facilitated the formation of
nitrogen-carboxyl bonds, enhancing the micropore volume and CO2 adsorption capacity. The calcined samples demonstrated extended breakthrough
times, indicating improved adsorption efficacy. Overall, this study confirms
that targeted oxygenation and calcination enhance the functional group
composition and pore structure of coal-based activated carbon, albeit with a
modest increase in adsorption capacity due to low volatile content.
Keywords: Adsorbent; calcination; coal-based activated carbon; CO2 sorption; oxygen functional group
ABSTRAK
Ciri permukaan dan prestasi bahan penjerap adalah penting untuk memahami penyerapan CO2. Kajian ini menggunakan arang batu yang belum dieksploitasi daripada loji janakuasa, menunjukkan potensinya sebagai penjerap CO2 yang berkesan melalui analisis proksimat, analisis ultim dan penilaian nombor iodin. Analisis BET mendedahkan bahawa isi padu mesopori secara tekal lebih tinggi berbanding mikropori dalam semua sampel dengan sampel 'CMC' menunjukkan isi padu mesopori tertinggi melebihi 0.3 cm³/g. Kumpulan fungsi kimia permukaan dan struktur liang memainkan peranan penting dalam prestasi karbon aktif dalam proses penjerapan. Dalam kajian ini, karbon aktif berasaskan arang batu digunakan sebagai bahan asas, menonjolkan kesan penggabungan oksigen ke dalam struktur bahan asas untuk menghasilkan tapak baharu yang mengandungi oksigen di permukaan. Kumpulan fungsi ini diperiksa lebih lanjut melalui proses kalsinasi dalam atmosfera nitrogen. Proses pengoksigenan dijalankan pada suhu berbeza - 100, 200, 300, 400 dan 500 °C - diikuti dengan kalsinasi pada suhu 900 °C. Aktiviti kumpulan fungsi tertinggi berlaku pada suhu 500 °C, dengan peralihan daripada kumpulan hidroksil kepada kumpulan karboksil. Kalsinasi suhu tinggi pada 900 °C memudahkan pembentukan ikatan nitrogen-karboksil, meningkatkan isi padu mikropori dan kapasiti penjerapan CO2. Sampel yang dikalsinasi menunjukkan masa terobosan yang lebih panjang, menunjukkan keberkesanan penjerapan yang lebih baik. Secara keseluruhan, kajian ini mengesahkan bahawa pengoksigenan dan kalsinasi yang disasarkan meningkatkan komposisi kumpulan fungsi dan struktur liang karbon aktif berasaskan arang batu, walaupun dengan peningkatan kapasiti penjerapan yang sederhana disebabkan kandungan bahan meruap yang rendah.
Kata kunci: Kalsinasi; karbon aktif berasaskan arang batu; kumpulan fungsi oksigen; penjerap; penyerapan CO2
REFERENCES
Akatsuka, M., Nakayama, A. & Tamura, M. 2024.
Adsorption behavior of atmospheric CO2 with/without water vapor on CeO2 surface. Applied Catalysis B:
Environmental 343: 123538. https://doi.org/10.1016/J.APCATB.2023.123538
Al-Ghouti, M.A.
& Da’ana, D.A. 2020. Guidelines for the use and
interpretation of adsorption isotherm models: A review. Journal of Hazardous
Materials 393: 122383. https://doi.org/10.1016/J.JHAZMAT.2020.122383
Anwar, M.N., Fayyaz, A., Sohail, N.F.,
Khokhar, M.F., Baqar, M., Yasar, A., Rasool, K., Nazir, A., Raja, M.U.F.,
Rehan, M., Aghbashlo, M., Tabatabaei, M. &
Nizami, A.S. 2020. CO2 utilization: Turning greenhouse gas into
fuels and valuable products. Journal of Environmental Management 260: 110059.
https://doi.org/10.1016/J.JENVMAN.2019.110059
Brunetti, A., Scura, F., Barbieri, G.
& Drioli, E. 2010. Membrane technologies for CO2 separation. Journal of Membrane Science 359(1-2): 115-125.
https://doi.org/10.1016/J.MEMSCI.2009.11.040
Canevesi, R.L.S., Schaefer, S., Izquierdo, M.T., Celzard, A.
& Fierro, V. 2022. Roles of surface chemistry and texture of nanoporous activated carbons in CO2 capture. ACS
Applied Nano Materials 5(3): 3843-354.
https://doi.org/10.1021/ACSANM.1C04474/SUPPL_FILE/AN1C04474_SI_001.PDF
Costa, J.A.S., De Jesus, R.A., Santos, D.O.,
Neris, J.B., Figueiredo, R.T. & Paranhos, C.M. 2021. Synthesis, functionalization,
and environmental application of silica-based mesoporous materials of the M41S
and SBA-n families: A review. Journal of Environmental Chemical Engineering 9(3): 105259. https://doi.org/10.1016/J.JECE.2021.105259
Dai, L., Lu, Q., Zhou, H., Shen, F., Liu,
Z., Zhu, W. & Huang, H. 2021. Tuning oxygenated functional groups on
biochar for water pollution control: A critical review. Journal of Hazardous
Materials 420: 126547. https://doi.org/10.1016/J.JHAZMAT.2021.126547
Florides, G.A. & Christodoulides,
P. 2009. Global warming and carbon dioxide through sciences. Environment
International 35(2): 390-401. https://doi.org/10.1016/J.ENVINT.2008.07.007
Ghanbari, T., Abnisa,
F. & Wan Daud, W.M.A. 2020. A review on production of metal organic frameworks
(MOF) for CO2 adsorption. Science of The Total Environment 707: 135090. https://doi.org/10.1016/J.SCITOTENV.2019.135090
Huang, Y., Su,
W., Wang, R. & Zhao, T. 2019. Removal of typical industrial gaseous pollutants:
From carbon, zeolite, and metal-organic frameworks to molecularly imprinted
adsorbents. Aerosol and Air Quality Research 19(9): 2130-2150.
https://doi.org/10.4209/AAQR.2019.04.0215
Igalavithana, A.D., Choi, S.W., Shang, J., Hanif, A.,
Dissanayake, P.D., Tsang, D.C.W., Kwon, J.H., Lee, K.B. & Ok, Y.S. 2020.
Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge:
Effect of porous structure and surface chemistry. Science of The Total
Environment 739: 139845. https://doi.org/10.1016/J.SCITOTENV.2020.139845
Indira, V. & Abhitha, K. 2023. Mesoporogen-free synthesis of hierarchical zeolite A for CO2 capture: Effect of freeze drying on surface structure, porosity and particle
size. Results in Engineering 17: 100886.
https://doi.org/10.1016/J.RINENG.2023.100886
Jalilian, M., Bissessur, R., Ahmed, M.,
Hsiao, A., He, Q.S. & Hu, Y. 2024. A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. Science of The Total Environment 914: 169823.
https://doi.org/10.1016/J.SCITOTENV.2023.169823
Jiang, D., Li, H., Wang, S., Cheng, X.,
Bartocci, P. & Fantozzi, F. 2023. Insight the CO2 adsorption
onto biomass-pyrolysis derived char via experimental analysis coupled with DFT calculation. Fuel 332: 125948. https://doi.org/10.1016/J.FUEL.2022.125948
Khan, U., Ogbaga,
C.C., Abiodun, O.A.O., Adeleke, A.A., Ikubanni, P.P.,
Okoye, P.U. & Okolie, J.A. 2023. Assessing absorption-based CO2 capture:
Research progress and techno-economic assessment overview. Carbon Capture
Science & Technology 8: 100125.
https://doi.org/10.1016/J.CCST.2023.100125
Kumar, S., Srivastava, R. & Koh, J.
2020. Utilization of zeolites as CO2 capturing agents: Advances and future
perspectives. Journal of CO2 Utilization 41: 101251. https://doi.org/10.1016/J.JCOU.2020.101251
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou,
Y., Zhang, W., Jiang, S., Li, H. & Huang, H. 2021. An overview on
engineering the surface area and porosity of biochar. Science of The Total
Environment 763: 144204. https://doi.org/10.1016/J.SCITOTENV.2020.144204
Li, N., Mo, L. & Unluer, C. 2022. Emerging CO2 utilization
technologies for construction materials: A review. Journal of CO2 Utilization 65: 102237. https://doi.org/10.1016/J.JCOU.2022.102237
Li, H., Chen, X., Shen, D., Wu, F., Pleixats, R. & Pan, J. 2021. Functionalized silica
nanoparticles: Classification, synthetic approaches and recent advances in
adsorption applications. Nanoscale 13(38): 15998-16016.
https://doi.org/10.1039/D1NR04048K
Mangun, C.L., Daley, M.A., Braatz, R.D.
& Economy, J. 1998. Effect of pore size on adsorption of hydrocarbons in
phenolic-based activated carbon fibers. Carbon 36(1-2): 123-129. https://doi.org/10.1016/S0008-6223(97)00169-3
Mondal, M.K., Balsora,
H.K. & Varshney, P. 2012. Progress and trends in CO2 capture/separation
technologies: A review. Energy 46(1): 431-441.
https://doi.org/10.1016/J.ENERGY.2012.08.006
Mohd Firdaus, R., Desforges, A.,
Mohamed, A.R. & Vigolo, B. 2021. Progress in
adsorption capacity of nanomaterials for carbon dioxide capture: A comparative
study. Journal of Cleaner Production 328: 129553.
https://doi.org/10.1016/J.JCLEPRO.2021.129553
Nguyen, T.S., Dogan, N.A., Lim, H.
& Yavuz, C.T. 2023. Amine chemistry of porous CO2 adsorbents. Accounts
of Chemical Research 56(19): 2642-2652.
https://doi.org/10.1021/ACS.ACCOUNTS.3C00367/SUPPL_FILE/AR3C00367_SI_001.PDF
Parikh, J., Channiwala,
S.A. & Ghosal, G.K. 2007. A correlation for calculating elemental
composition from proximate analysis of biomass materials. Fuel 86(12-13):
1710-1719. https://doi.org/10.1016/J.FUEL.2006.12.029
Park, K.H., Lee, J.W., Lim, Y. &
Seo, Y. 2022. Life cycle cost analysis of CO2 compression processes
coupled with a cryogenic distillation unit for purifying high-CO2 natural
gas. Journal of CO2 Utilization 60: 102002.
https://doi.org/10.1016/J.JCOU.2022.102002
Petrovic, B., Gorbounov,
M. & Masoudi Soltani, S. 2022. Impact of surface functional groups and
their introduction methods on the mechanisms of CO2 adsorption on
porous carbonaceous adsorbents. Carbon Capture Science & Technology 3: 100045. https://doi.org/10.1016/J.CCST.2022.100045
Powell, C.E. & Qiao, G.G. 2006.
Polymeric CO2/N2 gas separation membranes for the capture
of carbon dioxide from power plant flue gases. Journal of Membrane Science 279 (1-2): 1-49. https://doi.org/10.1016/J.MEMSCI.2005.12.062
Qian, Z., Wei, L., Wu, M. & Qi, G.
2021. Application of amine-modified porous materials for CO2 adsorption
in mine confined spaces. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 629: 127483.
https://doi.org/10.1016/J.COLSURFA.2021.127483
Qiu, C., Jiang, L., Gao, Y. & Sheng,
L. 2023. Effects of oxygen-containing functional groups on carbon materials in
supercapacitors: A review. Materials & Design 230: 111952.
https://doi.org/10.1016/J.MATDES.2023.111952
Raganati, F., Miccio, F. & Ammendola, P. 2021. Adsorption of carbon dioxide for
post-combustion capture: A review. Energy and Fuels 35(16): 12845-12868.
https://doi.org/10.1021/ACS.ENERGYFUELS.1C01618/ASSET/IMAGES/MEDIUM/EF1C01618_0004.GIF
Rzepka, P., Bacsik, Z., Smeets, S., Hansen,
T.C., Hedin, N. & Wardecki, D. 2018. Site-specific
adsorption of CO2 in zeolite NaK-A. Journal
of Physical Chemistry C 122(47): 27005-27015.
https://doi.org/10.1021/ACS.JPCC.8B09405/ASSET/IMAGES/LARGE/JP-2018-09405H_0004.JPEG
Saeed, M., Ahmed, M. & Ghaffar, A. 2003.
Adsorption profile of molecular iodine and iodine number of polyurethane foam. Separation Science and Technology 38(3): 715-731.
https://doi.org/10.1081/SS-120016661
Sai Bhargava Reddy, M., Ponnamma, D., Sadasivuni, K.K., Kumar, B. & Abdullah, A.M. 2021.
Carbon dioxide adsorption based on porous materials. RSC Advances 11(21): 12658-12681. https://doi.org/10.1039/D0RA10902A
Sarwar, A., Ali, M., Khoja, A.H., Nawar,
A., Waqas, A., Liaquat, R., Naqvi, S.R. & Asjid, M.
2021. Synthesis and characterization of biomass-derived surface-modified
activated carbon for enhanced CO2 adsorption. Journal of CO2 Utilization 46: 101476. https://doi.org/10.1016/J.JCOU.2021.101476
Schlumberger, C. & Thommes, M. 2021.
Characterization of hierarchically ordered porous materials by physisorption
and mercury porosimetry - A tutorial review. Advanced
Materials Interfaces 8(4): 2002181. https://doi.org/10.1002/ADMI.202002181
Shen, Y. 2022. Preparation of renewable
porous carbons for CO2 capture - A review. Fuel Processing
Technology 236: 107437. https://doi.org/10.1016/J.FUPROC.2022.107437
Singh, G., Lee, J., Karakoti,
A., Bahadur, R., Yi, J., Zhao, D., Albahily, K. &
Vinu, A. 2020. Emerging trends in porous materials for CO2 capture
and conversion. Chemical Society Reviews 49(13): 4360-4404.
https://doi.org/10.1039/D0CS00075B
Singh, G., Lakhi, K.S., Sil, S., Bhosale,
S.V., Kim, I.Y., Albahily, K. & Vinu, A. 2019.
Biomass derived porous carbon for CO2 capture. Carbon 148: 164-186.
https://doi.org/10.1016/J.CARBON.2019.03.050
Sun, Y., Wang, L., Wang, R., Zheng, S.,
Liao, X., Zhu, Z. & Zhao, Y. 2022. Insight on microscopic mechanisms of CH4 and CO2 adsorption of coal with different ranks. Fuel 330: 125715.
https://doi.org/10.1016/J.FUEL.2022.125715
Taher, T., Wibowo, Y.G., Maulana, S., Palapa,
N.R., Rianjanu, A. & Lesbani,
A. 2023a. Facile synthesis of biochar/layered double oxides composite by
one-step calcination for enhanced carbon dioxide (CO2) adsorption. Materials
Letters 338: 134068. https://doi.org/10.1016/J.MATLET.2023.134068
Taher, T., Putra, R., Sari, N.K., Zurfi, A., Rohman, A., Kurnia, I., Maulana, S., Kartika,
K., Wibowo, Y.G., Rianjanu,
A. & Lesbani, A. 2023b. Insight into the pyrolysis behavior of the drained Sumatra peat soil and the
characteristics of the resulting biochar for carbon dioxide (CO2) capture. Bioresource Technology Reports 24: 101680. https://doi.org/10.1016/J.BITEB.2023.101680
Vierling, M., Geiger, F., Brilhac, J.F., Dorge, S., Habermacher, D., Nouali, H., Guichard,
J.L., Marchal, E., Patarin, J., Soulard, M. &
Moliere, M. 2021. Novel desulfurization concept using a regenerable adsorbent. Proceedings
of the ASME Turbo Expo 4B-2020. https://doi.org/10.1115/GT2020-16222
Wickramaratne, N.P. & Jaroniec,
M. 2013. Activated carbon spheres for CO2 adsorption. ACS Applied
Materials and Interfaces 5(5): 1849-1855. https://doi.org/10.1021/AM400112M/SUPPL_FILE/AM400112M_SI_001.PDF
Yuan, J., Lin, Q., Chen, S., Zhao, H., Xie,
X., Cai, Z., Zhang, J., Cheng, T., Hua, M. & Zhang, R. 2022. Influence of global
warming and urbanization on regional climate of megacity: A case study of
Chengdu, China. Urban Climate 44: 101227.
https://doi.org/10.1016/J.UCLIM.2022.101227
Zhang, M., Bai, Y., Men, X., Song, X., Lv, P., Wang, J., Su, W., Lu, G.
& Yu, G. 2024. Evolution of oxygen-containing functional groups on coal
char surface during gasification in H2O/CO2. Journal
of the Energy Institute 114: 101622.
https://doi.org/10.1016/J.JOEI.2024.101622
Zhao, P., Zhang, G., Yan, H. & Zhao,
Y. 2021. The latest development on amine functionalized solid adsorbents for
post-combustion CO2 capture: Analysis review. Chinese Journal of
Chemical Engineering 35: 17-43. https://doi.org/10.1016/J.CJCHE.2020.11.028
*Pengarang untuk surat-menyurat; email: ikam005@brin.go.id
|